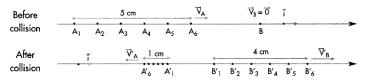
دورة سنة 2002 الاستثنائية


امتحانات شهادة الثانوية العامة فرع علوم الحياة وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات

|                  | ·                                    | دائرة الامتحانات |
|------------------|--------------------------------------|------------------|
| الاسم:<br>الرقم: | مسابقة في الفيزياء<br>المدة : ساعتان |                  |

## This exam is formed of three obligatory exercises in three pages numbered from 1 to 3. The use of non-programmable calculators is allowed.

## **First Exercise** (7 points) Collision and the laws of conservation

In order to study the collision between two bodies, we use a horizontal air table that is equipped with a launcher and two pucks (A) and (B) of respective masses  $m_A = 0.2$  kg and  $m_B = 0.3$  kg.



(A), thrown with the velocity  $\vec{V}_A = V_A \vec{i}$ , enters in a head-on collision with (B), initially at rest. (A) rebounds with the velocity  $\vec{V'}_A = V'_A \vec{i}$ , and (B) is projected with the velocity  $\vec{V'}_B = V'_B \vec{i}$ . The figure below shows, in real dimensions, a part of the dot-prints, that register the positions of the centers of masses of (A) and (B), obtained when the time interval separating two successive dots is  $\tau = 20$  ms.

#### A) Law related to the linear momentum

- I) 1) Show, using the above dot-prints, that the velocities  $V_A$ ,  $V'_A$  and  $V'_B$  are constant and calculate the algebraic values  $\vec{V}_A$ ,  $\vec{V'}_A$  and  $\vec{V'}_B$ .
  - 2) Determine the linear momentums  $\vec{P}_A$  and  $\vec{P'}_A$  of the puck (A), before and after collision respectively and that  $\vec{P'}_B$  of the puck (B) after collision.
  - 3) Deduce the linear momentums,  $\vec{P}$  and  $\vec{P}'$ , of the center of mass of the system [(A) and (B)] before and after collision respectively.
  - 4) Compare  $\vec{P}$  and  $\vec{P'}$  then conclude.
- II) 1) Name the forces acting on the system [(A), (B)].
  - 2) What is the value of the resultant of these forces?
  - 3) This result agrees with the conclusion of (I 4). Why?

### B) Law related to the kinetic energy

- 1) Calculate the kinetic energy of the system [(A), (B)] before and after collision.
- 2) Deduce the nature of this collision.

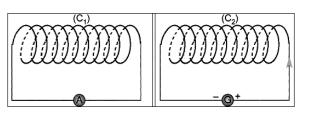
# Second Exercise (7 points) The transformer

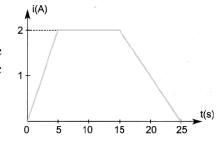
The purpose of this exercise is to study the principle of functioning of an ideal transformer and its role.

Consider two coils,  $(C_1)$  of 1000 turns and  $(C_2)$  of 500 turns; the surface area of each of the turns of  $(C_1)$  and  $(C_2)$  is 100 cm<sup>2</sup>.

## A) Principle of functioning

The coil (C<sub>1</sub>) is connected to a sensitive ammeter (A) and the coil (C<sub>2</sub>) is connected across a generator thus forming two closed circuits. (Fig. 1) The coil (C<sub>2</sub>) carries then a current i that varies with time as shown in the graph of figure 2. As a resultat, (C<sub>2</sub>) produces, through (C<sub>1</sub>), a magnetic field  $\vec{B}$  supposed uniform of magnitude  $B = 2x10^{-3}i$  (B in T and i in A). 1) Give the expression of the magnetic flux crossing (C<sub>1</sub>) in terms of i.


- 2) Give the expression of the magnetic flux crossing  $(C_1)$  in term 2) Give the expression of e, the e.m.f. induced in  $(C_1)$ .
- 3) Find the values of e for 0s < t < 25 s.
- 4) Trace the graph giving the variation of e as a function of time t for  $0s \le t \le 25 s$ . Scale: on the time axis:  $1cm \rightarrow 5 s$  and on the axis of e:  $1cm \rightarrow 4 mV$ .
- 5) Draw again figure 1 and indicate, using Lenz's law, the direction of the current induced in (C<sub>1</sub>), i the interval of time  $0s \le t \le 5 s$ .


### B) Role

The coils (C<sub>1</sub>) and (C<sub>2</sub>), disconnected from the preceding circuit, are used to construct an ideal transformer (T) using a convenient iron core. (C<sub>1</sub>) and (C<sub>2</sub>) are respectively the primary and the secondary.

- 1) We connect across (C<sub>1</sub>) a sinusoidal alternating voltage of effective value  $V_1 = 220$  V. A voltmeter, in AC mode connected across (C<sub>2</sub>), reads a value  $V_2$ .
  - a) Give a simplified diagram of (T).
  - b) Does (T) act as a step-up or a step-down transformer? Justify your answer and calculate  $V_2$ .

2) A lamp, connected across the terminals of (C<sub>2</sub>), carries a current of effective value  $I_2 = 1$  A. Calculate the effective current  $I_1$  carried by the coil (C<sub>1</sub>).





## Third exercise (6 points) Nuclear fission

Given: mass of a neutron:  $m_n = 1.00866 \text{ u}$ mass of a 235 uranium nucleus :  $m(^{235}U) = 234.99342 \text{ u}$ mass an iodine nucleus A:  $m(^{A}I) = 138.89700 \text{ u}$ mass of a 94 yttrium nucleus 94:  $m(^{94}Y) = 93.89014 \text{ u}$  $1 \text{ u} = 1.66054 \text{ x} 10^{27} \text{ kg} = 931.5 \text{ MeV/c}^2.$  $1 \text{ eV} = 1.6 \text{ x} 10^{-19} \text{ J}$ 

In a nuclear power station, the fissionable fuel is made up of 235 uranium nuclei. The nuclei that undergo a nuclear reaction must have been bombarded with a thermal neutron.

1) One of the possible reactions that the uranium 235 undergoes has the form of:

 ${}^1_0 n + {}^{235}_{92} U \longrightarrow {}^A_{53} I + {}^{92}_Z Y + 3{}^1_0 n + \gamma \,. \label{eq:235}$ 

a) The 235 uranium nucleus is fissionable. Why?

b) The nuclear reaction that the 235 uranium nucleus undergoes is said to be provoked. A provoked reaction is one of two types of nuclear reactions. Name the other type and tell how it can be distinguished from the other.

- c) Determine the values of A and Z specifying the supporting laws.
- d) Calculate the energy liberated during the preceding reaction.

In what form does this liberated energy appear?

2) The nuclear power station converts 30% of the liberated energy into electrical energy.

Calculate the mass of 235 uranium consumed by the power station during one day if the electric power it supplies is  $6 \times 10^8$  W.